Frequently Asked Questions about Agentic AI

What is agentic AI and how does this differ from the traditional AI used in cybersecurity? Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Unlike traditional AI, which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In Software Bill of Materials , agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities. What are some real-world examples of agentic AI being used in cybersecurity today? Examples of agentic AI in cybersecurity include: Platforms that automatically detect and respond to malicious threats and continuously monitor endpoints and networks. AI-powered vulnerability scans that prioritize and identify security flaws within applications and infrastructure Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats Autonomous incident response tools that can contain and mitigate cyber attacks without human intervention AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time How can agentic AI help bridge the skills gap in cybersecurity and alleviate the burden on security teams? Agentic AI can help address the cybersecurity skills gap by automating many of the repetitive and time-consuming tasks that security professionals currently handle manually. By taking on tasks such as continuous monitoring, threat detection, vulnerability scanning, and incident response, agentic AI systems can free up human experts to focus on more strategic and complex security challenges. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats. Agentic AI can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities. Autonomous agents can ensure that security controls are consistently enforced, vulnerabilities are promptly addressed, and security incidents are properly documented and reported. However, evolving ai security of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis. How can https://www.g2.com/products/qwiet-ai/reviews/qwiet-ai-review-8369338 integrate agentic AI into their existing security tools and processes? To successfully integrate agentic AI into existing security tools and processes, organizations should: Assess the current security infrastructure to identify areas that agentic AI could add value. Develop a clear strategy and roadmap for agentic AI adoption, aligned with overall security goals and objectives Ensure that agentic AI systems are compatible with existing security tools and can seamlessly exchange data and insights Provide training and support for security personnel to effectively use and collaborate with agentic AI systems Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity Some emerging trends and directions for agentic artificial intelligence in cybersecurity include: Increased collaboration and coordination between autonomous agents across different security domains and platforms Development of more advanced and contextually aware AI models that can adapt to complex and dynamic security environments Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making How can agentic AI help organizations defend against advanced persistent threats (APTs) and targeted attacks? Agentic AI provides a powerful defense for APTs and targeting attacks by constantly monitoring networks and systems to detect subtle signs of malicious behavior. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. this video , which adapts to new attack methods and learns from previous attacks, can help organizations detect APTs and respond more quickly, minimising the impact of a breach. The following are some of the benefits that come with using agentic AI to monitor security continuously and detect threats in real time: Monitoring of endpoints, networks, and applications for security threats 24/7 Prioritization and rapid identification of threats according to their impact and severity Security teams can reduce false alarms and fatigue by reducing the number of false positives. Improved visibility of complex and distributed IT environments Ability to detect new and evolving threats which could evade conventional security controls Security incidents can be dealt with faster and less damage is caused. How can agentic AI enhance incident response and remediation? Agentic AI has the potential to enhance incident response processes and remediation by: Automatically detecting and triaging security incidents based on their severity and potential impact Contextual insights and recommendations to effectively contain and mitigate incidents Orchestrating and automating incident response workflows across multiple security tools and platforms Generating detailed reports and documentation to support compliance and forensic purposes Learning from incidents to continuously improve detection and response capabilities Enabling faster and more consistent incident remediation, reducing the overall impact of security breaches What are some considerations for training and upskilling security teams to work effectively with agentic AI systems? Organizations should: Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools Encourage security personnel to collaborate with AI systems, and provide feedback on improvements. Develop clear protocols and guidelines for human-AI interaction, including when to trust AI recommendations and when to escalate issues for human review Invest in upskilling programs that help security professionals develop the necessary technical and analytical skills to interpret and act upon AI-generated insights To ensure an holistic approach to the adoption and use of agentic AI, encourage cross-functional collaboration among security, data science and IT teams. How can organizations balance? How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To achieve ai-powered vulnerability analysis between using agentic AI in cybersecurity and maintaining human oversight, organizations should: Assign roles and responsibilities to humans and AI decision makers, and ensure that all critical security decisions undergo human review and approval. Use AI techniques that are transparent and easy to explain so that security personnel can understand and believe the reasoning behind AI recommendations Test and validate AI-generated insights to ensure their accuracy, reliability and safety Maintain human-in the-loop methods for high-risk security scenarios such as incident response or threat hunting Encourage a culture that is responsible in the use of AI, highlighting the importance of human judgement and accountability when it comes to cybersecurity decisions. Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals